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Omics Sciences and Artificial Intelligence: Future Directions 
for Tailored Social Medicine 

Marianna Talia, Eugenio Cesario, Rosamaria Lappano, Marcello Maggiolini * 

ABSTRACT: Biomedical research is rapidly advancing through the convergence of 
omics sciences with artificial intelligence (AI) applications. Genomics, tran-
scriptomics, proteomics, and metabolomics, among others, generate multidimen-
sional data that embrace molecular complexity of diseases, whereas AI enables 
the integration, interpretation, and prediction from these datasets. Together, they 
contribute to enhance patient-tailored medicine by supporting biomarker discov-
ery, disease classification, patient stratification, and personalized therapies. How-
ever, challenges such as data quality, cost, reproducibility, and model interpreta-
bility remain. Emerging strategies including federated learning and large language 
models provide promising solutions, bridging precision and social medicine to 
promote health equity, improve clinical decision-making, and maximize the socie-
tal impact of digital health innovations. 

KEYWORDS: Omics data, artificial intelligence, machine learning, social medicine, 
personalized medicine 

SUMMARY: 1. Introduction – 2. Methods – 2.1. Transcriptomics – 2.2. Proteomics and Metabolomics – 2.3. Single-
Cell Technologies – 3. Results – 3.1. Patient Stratification and Precision Medicine – 3.2. Multi-Omics Integration 
and Systems-Level Insights – 4. Discussion – 5. Conclusions. 

1. Introduction 

iomedical research is experiencing unprecedented progress through the integration of digital 
technologies. A wide array of digital health innovations, including interventions, applications 
and devices are being continuously developed and optimized in order to refine personalized 

medicine from the perspectives of patient, healthcare professional, healthcare infrastructures and in-
dustry stakeholders.1 In this context, recent advancements in omics technologies, including genomics, 
transcriptomics and proteomics, is empowering our knowledge on various diseases, offering insights in-
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to the underlying molecular mechanisms.2 Additionally, artificial intelligence (AI) has become an essen-
tial resource to interrogate the huge amount of omics data generated by high-throughput technologies, 
enabling to capture the full degree of disease-related complexity. In this scenario, the convergence of 
omics and AI holds great promise in precision and social medicine. Indeed, integrating patient-derived 
data can disclose hidden patterns that predict disease, inform diagnosis, guide care and support both 
patients and clinicians in decision making, potentially outperforming existing conventional protocols. 
While AI provides the analytical and statistical powers to interrogate datasets, omics sciences constitute 
the backbone of this information. By capturing multiple layers of biological organization in both health 
and disease, integrating DNA sequence data, RNA expression as well as protein and metabolite abun-
dance, omics approaches create a bridge that links molecular profiling to phenotype manifestation.3 A 
pivotal milestone in the rise of omics studies is represented by the human genome sequencing project, 
which was achieved in the early 2000s through two independent initiatives, the publicly funded Human 
Genome Project and a private effort led by J. Craig Venter. Genomics investigations catalogue the entire 
DNA of an organism, aiming to identify gene structures, functions and interactions, as well as their cor-
relation to biological processes.4 Beyond the initial view of describing the human genome through a sin-
gle reference sequence, recent studies revealed a growing collection of human genomes that reflect 
population-specific variations, encompassing single nucleotide polymorphisms (SNPs), insertions and de-
letions, copy number variations (CNVs) and structural variants.5 Beginning with genomics, subsequent 
omics disciplines, depicting additional layers of gene expression, have emerged and led to the genera-
tion of multi-dimensional datasets.6 The genome dynamic expression, represented by the entire RNA 
set, reveals how genes are differentially regulated within specific tissues or conditions. Advances in RNA-
sequencing (RNA-seq) approaches have greatly expanded our ability to study the transcriptome respect 
to previous microarray-based approaches. RNA-seq has provided critical insights into the complexity of 
gene expression regulation, including alternative splicing and the roles of non-coding and enhancer 
RNAs in modulating transcriptional activity.7 Following these advancements, single-cell RNA-seq (scRNA-
seq), was developed to explore the transcriptional dynamics at single cell resolution.8 More recently, 
spatial transcriptomics has further implemented RNA-seq technology by preserving the spatial context 
of gene expression within tissues, allowing to map the cellular organization and interactions at unprece-
dented resolution. In oncology, these approaches represent precious resources able to reveal how tu-
mor cells interact and arrange toward immune evasion, drug resistance and metastatic features, provid-

 
2 A. SHARMA, A. LYSENKO, S. JIA, K.A. BOROEVICH, T. TSUNODA, Advances in AI and machine learning for predictive medi-
cine, in J Hum Genet, 69, 2024, 487–497.  
3 K.Y.X. WANG, G.M. PUPO, V. TEMBE, E. PATRICK, D. STRBENAC, S-J. SCHRAMM, et al., Cross-Platform Omics Prediction pro-
cedure: a statistical machine learning framework for wider implementation of precision medicine, in NPJ Digital 
Med., 5, 2022, 85. 
4 C. MANZONI, D.A. KIA, J. VANDROVCOVA, J. HARDY, N. W. WOOD, P. A. LEWIS, et al., Genome, transcriptome and proteo-
me: the rise of omics data and their integration in biomedical sciences, in Brief Bioinform, 19, 2018, 286–302.  
5 R.M. SHERMAN, S.L. SALZBERG, Pan-genomics in the human genome era, in Nat Rev Genet, 21, 2020, 243–254.  
6 M. MANN, C. KUMAR, W.F. ZENG, M.T. STRAUSS, Artificial intelligence for proteomics and biomarker discovery, in Cell 
Syst, 12, 2021, 759–770.  
7 X. LI, C.-Y. WANG., From bulk, single-cell to spatial RNA sequencing, in Int J Oral Sci, 13, 2021, 36.  
8 D. JOVIC, X. LIANG, H. ZENG, L. LIN, F. XU, Y. LUO, Single-cell RNA sequencing technologies and applications: A brief 
overview, in Clin Transl Med., 12, 2022, e694.  
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ing critical insights for precision medicine.9 Mass spectrometry (MS)-based proteomics and metabolom-
ics finally represents the functional output of the genome and transcriptome, assessing the dynamic mo-
lecular layers linked to cellular phenotypes in health and disease conditions.10 Although the comprehen-
sive understanding of biological systems derived from omics studies, the high dimensionality of data, as 
well as the intricate relationships existing between data layers represent analytical challenges. In this 
vein, machine learning (ML) and deep learning (DL) approaches enable the extraction of biological and 
clinically meaningful insights from complex datasets, thereby paving the way for precision and social 
medicine. AI facilitates biomarker discovery, disease classification, patient stratification, disease risk 
prediction, and target identification toward personalized therapies. ML, a branch of AI, learns from data 
to improve prediction tasks, whereas DL, a sub-field of ML, uses multi-layered models for automated 
feature extraction and pattern recognition in complex datasets. Nevertheless, most DL applications hold 
limited transparency and explainability that restrain their applicability in omics studies.11 Beyond model 
interpretability, additional challenges are represented by data quality and standardization since large 
differences exist across different protocols and platforms regarding specificity, sensitivity, chemistry of 
library construction and bioinformatics.12 Additionally, in many cases, datasets contain a limited number 
of patients, for example due to phenotype rarities, making the reproducibility a critical concern.13 An-
other limitation is related to the high costs for generating omics data that often limits cohort size, reduc-
ing the statistical power and the reproducibility of ML models. Aiming to maximize the value of clinical 
and related omics data, politicians, funders, and publishers should support and implement data sharing 
policies that further restrict biomedical advancements. Simultaneously, researchers should be trained to 
effectively reuse existing datasets to strengthen their studies and the robustness of their conclusions.14 
In this context, federated learning (FL), a distributed ML approach, where data is decentralized and 
models are trained locally, is emerging as a promising strategy for omics data analysis further supporting 
personalized and social medicine. FD overcomes the problem of collecting and integrating data from 
medical institutions, enabling collaborative model training without the need to centralize sensitive pa-
tient data.15 At the same time, large language models (LLMs) could enhance trust and facilitate clinical 
adoption thanks to their capability in language understanding and the ability to tackle new tasks through 
in-context learning.16 

 
9 X. LI, C.Y. WANG, op. cit. 
10 T. KOWALCZYK, M. CIBOROWSKI, J. KISLUK, A. KRETOWSKI, C. BARBAS, Mass spectrometry based proteomics and meta-
bolomics in personalized oncology, in Biochim Biophys Acta Mol Basis Dis, 1866, 2020, 165690.  
11 S. SHAFI, A.V. PARWANI, Artificial intelligence in diagnostic pathology, in Diagn Pathol, 18, 2023, 109.  
12 M. WYSOCKA, O. WYSOCKI, M. ZUFFEREY, D. LANDERS, A. FREITAS, A systematic review of biologically-informed deep 
learning models for cancer: fundamental trends for encoding and interpreting oncology data, in BMC Bioinforma-
tics, 24, 2023, 198.  
13 X. CHEN, Z. YANG, W. CHEN, Y. ZHAO, A. FARMER, B. TRAN, et al., A multi-center cross-platform single-cell RNA sequenc-
ing reference dataset, in Sci Data, 8, 2021, 39. 
14 Y. LIANG, A. KELEMEN, A. KELEMEN, Reproducibility of biomarker identifications from mass spectrometry proteomic 
data in cancer studies, in Stat Appl Genet Mol Biol, 18, 2019.  
15 C. LOCHER, G. LE GOFF, A. LE LOUARN, U. MANSMANN, F. NAUDET, Making data sharing the norm in medical research. In 
BMJ, 382, 2023, 1434.  
16 Q. WANG, M. HE, L. GUO, H. CHAI, AFEI: adaptive optimized vertical federated learning for heterogeneous multi-
omics data integration, in Brief Bioinform, 24, 2023.  
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Social medicine, which focuses on social, economic and cultural conditions that impact health, disease 
and the practice of medicine17, may take useful advantages from these technological innovations. It 
frames biomedical progress within the context of health equity, public health priorities and the reduc-
tion of disparities, ensuring that data-driven advances comprehensively allow individual and society 
benefit.  

2. Methods 

High-throughput technologies advent has represented a turning point in medical science, enabling the 
generation of multi-omics datasets.18 Next generation sequencing (NGS) approaches produce vast 
amounts of DNA sequence data, offering detailed insights into genetic variation, mutations, as well as 
DNA methylation profiles.19 RNA-seq measures average transcript abundance within a sample, encom-
passing both coding and non-coding RNAs.20 MS-based methods allow the detection and quantification 
of proteins and metabolites, thereby completing the multi-omics framework toward a comprehensive 
phenotype characterization.21 Advances in genomics, transcriptomics and proteomics have been 
achieved through the development of single-cell technologies, which capture the complexity of clinical 
conditions that are characterized by molecular heterogeneity at the single cell level, such as in tumors.22 
Genomics. Genome sequencing has accelerated the discovery of disease-associated genes, novel gene 
variants and their related phenotypes.23 After DNA extraction from biological samples, typical NGS pipe-
lines involve DNA fragmentation and ligation to platform-specific adapters, followed by amplification 
and sequencing. Next steps comprise quality control (QC) of the reads and alignment to the reference 
genome.24 A base-pair resolution across the entire genome is provided by whole genome sequencing 
(WGS), whereas whole exome sequencing (WES) only targets protein-coding regions.25 The resulting da-
ta allow comprehensive characterization of genomic variation and integrative analyses with further om-
ics layers. 

 
17 Z. WANG, H. WANG, B. DANEK, Y. LI, C. MACK, L. ARBUCKLE, et al., A perspective for adapting generalist AI to special-
ized medical AI applications and their challenges, in NPJ Digital Med., 8, 2025, 429.  
18 N. NOUR, D. ONCHONGA, S. NEVILLE, P. O’DONNELL, M. E. ABDALLA, Integrating the social determinants of health into 
graduate medical education training: a scoping review, in BMC Med Educ., 24, 2024, 565.  
19 B. HWANG, J.H. LEE, D. BANG, Single-cell RNA sequencing technologies and bioinformatics pipelines, in Exp Mol 
Med., 50, 2018, 1–14.  
20 X. LI, C.Y. WANG, op. cit. 
21 Y.J. HEO, C. HWA, G.H. LEE, J.M. PARK, J.Y. AN, et al., Integrative multi-omics approaches in cancer research: From 
biological networks to clinical subtypes, in Mol Cells, 44, 2021, 433–443.  
22 B. ASLAM, M. BASIT, M.A. NISAR, M. KHURSHID, M.H. RASOOL, Proteomics: Technologies and their applications, in J 
Chromatogr Sci., 55, 2017, 182–196.  
23 D.T. MELNEKOFF, A. LAGANÀ, Single-cell sequencing technologies in precision oncology, in Adv Exp Med Biol., 1361, 
2022, 269–282.  
24 M.L. METZKER, Sequencing technologies - the next generation, in Nat Rev Genet., 11, 2010, 31–46.  
25 R. RAMAKRISHNAN, A. WASHINGTON, S. SUVEENA, J.R. RANI, O.V. OOMMEN, From DNA to big data: NGS technologies and 
their applications, in Methods Mol Biol., 2952, 2025, 459–482.  
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2.1. Transcriptomics 

RNA-seq workflow starts from raw sequencing data and culminates with the identification of differen-
tially expressed genes (DEGs) across experimental groups. It involves mRNA-only library and whole tran-
scriptome library that includes all RNA species except for rRNA.26 Total RNA is extracted from biological 
samples, RNA quality is evaluated, and RNA is then fragmented and reverse-transcribed to produce 
double stranded complementary DNA (cDNA). Sequencing libraries are constructed through adaptor li-
gation and amplification, followed by sequencing to produce millions of reads.27 The generated raw se-
quences undergo QC and filtering to remove low-quality reads and adaptors. Processed reads are then 
aligned to the reference genome and quantified. The resulting data is then normalized and DEGs are 
identified by comparing normalized expression profiles across conditions. 

2.2. Proteomics and Metabolomics 

To comprehensively assess the molecular alterations in biological samples, including protein abundance, 
peptide composition, and post-translational modifications, high-resolution MS offers the most robust 
approach.28 Proteins are extracted using appropriate lysis buffers and enzymatically digested to gener-
ate peptides. These peptides are separated by liquid chromatography, ionized through electrospray ion-
ization (ESI) or matrix-assisted laser desorption/ionization (MALDI), and analyzed by MS, which 
measures their mass-to-charge ratios and provide sequence information. The most commonly used 
mass analyzers are quadrupole, time of flight (ToF), and Orbitrap. Identification and quantification are 
carried out by comparison with protein databases and spectral matching. Similar approaches are em-
ployed to identify metabolic intermediates. Metabolites are extracted using solvent-based protocols and 
profiled by liquid or gas chromatography coupled to high-resolution MS.29 Specialized software that de-
tects peaks in the spectra enables alignment, annotation and quantification. In both proteomic and 
metabolomic analyses, data are subjected to QC, normalization, and statistical evaluation.30 

2.3. Single-Cell Technologies 

Omics studies are increasingly moving to single cell resolution with scRNA-seq being the most employed 
technique, particularly in oncology.31 Compared to bulk approaches, individual cells are first isolated 
through microfluidic or droplet-based systems, lysed to release RNA that is captured through primers or 
barcoded beads.32 RNA is then reverse-transcribed into cDNA, amplified, and subjected to high-
throughput sequencing. Downstream processing, including QC, read alignment, normalization, and di-

 
26 X. LI, C.Y. WANG, op. cit. 
27 C. MANZONI, D.A. KIA, J. VANDROVCOVA, J. HARDY, N.W. WOOD, P. A. LEWIS, et al., op. cit. 
28 S. ROZANOVA, K. BARKOVITS, M. NIKOLOV, C. SCHMIDT, H. URLAB, K. MARCUS, Quantitative mass spectrometry-based pro-
teomics: An overview, in Methods Mol Biol, 2228, 2021, 85-116.  
29 S. ALSEEKH, A. AHARONI, Y. BROTMAN, K. CONTREPOIS, J. D’AURIA, J. EWALD, et al., Mass spectrometry-based metabolo-
mics: a guide for annotation, quantification and best reporting practices, in Nat Methods, 18, 2021, 747–756. 
30 J. SUN, Y. XIA, Pretreating and normalizing metabolomics data for statistical analysis, in Genes Dis, 11, 2024, 
100979.  
31 Y. ZHANG, D. WANG, M. PENG, L. TANG, J. OUYANG, F. XIONG, et al., Single-cell RNA sequencing in cancer research, in J 
Exp Clin Cancer Res, 40, 2021, 81. 
32 B. HWANG, J. H. LEE, D. BANG, op. cit. 
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mensionality reduction, enable the identification of cell clusters with peculiar transcriptional profiles, 
allowing the reconstruction of developmental trajectories and functional annotation. A further RNA-seq 
implementation is spatial transcriptomics, that dissects spatially patterned gene expression across tissue 
sections.33 In this context, tissue sections are fixed, stained and imaged; RNA is released, captured by 
spatially barcoded probes and converted to cDNA for library preparation. Downstream analyses follow 
approaches developed in single-cell studies. Further single cell techniques include single-cell DNA-
sequencing, single-cell proteomics and single-cell metabolomics, although these are less routinely ap-
plied due to technical limitations such as low input material, and limited sensitivity.34 
The advent of high-throughput omics technologies has generated richly layered, high-dimensional da-
tasets that reveal the intricate dynamics of biological systems. AI, and in particular ML and DL tech-
niques, provides advanced approaches and methodologies to extract meaningful patterns and 
knowledge from high-dimensional, heterogeneous, and complex data. 
One of the most widely used AI methodologies in omics is supervised ML, where algorithms learn to 
predict outcomes based on labeled datasets. For example, classifiers such as support vector machines 
(SVMs), random forests, and gradient boosting are frequently adopted for biomarker identification, dis-
ease classification, and patient stratification, leveraging annotated datasets to guide model inference.35 
These models are particularly valuable for precision medicine, where the objective is to predict patient 
responses to treatments or to stratify patients according to molecular signatures. 
In addition to supervised learning, unsupervised learning plays a crucial role in omics data exploration. 
In particular, dimensionality reduction methods, clustering algorithms, and self-organizing maps support 
exploratory analysis by identifying latent structure and molecular subtypes without reliance on labeled 
data.36 More precisely, dimensionality reduction methods, such as principal component analysis (PCA) 
and t-distributed stochastic neighbor embedding (t-SNE) are frequently applied to visualize complex da-
tasets and to reduce redundancy before further modeling. Moreover, both hierarchical and partitional 
clustering approaches allow researchers to group samples or genes with similar expression patterns, re-
vealing hidden structures and biological subtypes. 
A particularly promising area of AI is the application of DL. Neural networks, including convolutional and 
recurrent architectures, can model non-linear and hierarchical relationships in omics data. DL has shown 
success in tasks such as predicting gene–disease associations, inferring regulatory networks, and inte-
grating multi-omics layers. Moreover, autoencoders are often used to perform robust nonlinear trans-
formations for dimensionality reduction and feature extraction. For example, techniques such as de-
noising autoencoders and variational autoencoders (VAEs) have been deployed to denoise data, stratify 

 
33 A. RAO, D. BARKLEY, G.S. FRANÇA, I. YANAI, Exploring tissue architecture using spatial transcriptomics, in Nature, 596, 
2021, 211–220. 
34 H.M. BENNETT, W. STEPHENSON, C.M. ROSE, S. DARMANIS, Single-cell proteomics enabled by next-generation sequenc-
ing or mass spectrometry, in Nat Methods, 20, 2023, 363–374.  
35 A. YETGIN, Revolutionizing multi-omics analysis with artificial intelligence and data processing, in Quant Biol., 13, 
2025. 
36 N. VAHABI, G. MICHAILIDIS, Unsupervised multi-Omics data integration methods: A comprehensive review, in Front 
Genet, 13, 2022, 854752.  
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patients, and discover latent omic embeddings.37 Complementarily, the Multi-view Factorization Auto-
Encoder (MAE) integrates biological network constraints into autoencoders to improve the integration 
of multi-omic data and to boost prediction accuracy.38 
Another important methodological aspect is multi-omics integration, where AI approaches are used to 
combine information from different omics layers in order to provide a more comprehensive understand-
ing of biological systems. Methods such as multi-view learning, Bayesian networks, and graph-based 
models enable the integration of genomics, epigenomics, transcriptomics, and proteomics data, sup-
porting the identification of cross-level interactions and pathways. For example, Graph Neural Networks 
(GNNs) map multiple omics layers onto graph structures and capture inter-entity relationships via mes-
sage passing, enabling prediction and inference within network contexts.39 Also, concatenation-based, 
transformation-based, and network-based strategies have been recently proposed to harness comple-
mentary layers of biological information.40 Finally, Bayesian relational learning frameworks further facili-
tate integrative analysis by discovering latent interactions across omics layers via graph-encoded rela-
tionships.41 

3. Results 

AI, encompassing ML and DL techniques, has found multiple applications in omics sciences and is pro-
foundly transforming biomedical research. These approaches are enabling the generation of novel re-
sults and the extraction of actionable biological insights with direct relevance to medicine. Below, we 
provide a concise overview of the most significant applications and advancements in this domain. 
Biomarker Discovery and Disease Diagnosis. Biomarker discovery is the process of identifying measura-
ble indicators, such as molecules or physiological changes, that signal the presence of a disease, predict 
its risk, or monitor treatment response. This multi-stage process involves high-throughput screening of 
biological samples like blood or tissue using techniques such as genomics and proteomics, followed by 
data analysis and rigorous validation to confirm the candidate markers. The identification of biomarkers 
across multiple omics layers has become a challenging and innovative task in omics science, with the 
aim of improving diagnostic and prognostic precision in diseases like cancer and liver disorders. This task 
is faced by the application of supervised ML algorithms such as SVMs, random forests, and neural net-
works, which are extensively applied to detect molecular signatures associated with disease.42 

 
37 Y. WEN, L. ZHENG, D. LENG, C. DAI, J. LU, Z. ZHANG, et al., Deep learning-based multiomics data integration methods 
for biomedical application, in Adv Intell Syst, 5, 2023. 
38 T. MA, A. ZHANG, Integrate multi-omics data with biological interaction networks using Multi-view Factorization 
AutoEncoder (MAE), in BMC Genomics, 20, 2019, 944.  
39 W. JIANG, W. YE, X. TAN, Y.J. BAO, Network-based multi-omics integrative analysis methods in drug discovery: a sys-
tematic review, in BioData Min., 18, 2025, 27.  
40 Y. NAM, J. KIM, S.H. JUNG, J. WOERNER, E.H. SUH, D.G. LEE, et al., Harnessing artificial intelligence in multimodal omics 
data integration: Paving the path for the next frontier in precision medicine, in Annu Rev Biomed Data Sci, 7, 2024, 
225–250. 
41 E. HAJIRAMEZANALI, A. HASANZADEH, N. DUFFIELD, K.R. NARAYANAN, X. QIAN, BayReL: Bayesian Relational Learning for 
multi-omics data integration, 2020.  
42 A. YETGIN., op. cit.; T. WU, S.A. COOPER, V.H. SHAH, Omics and AI advance biomarker discovery for liver disease, in 
Nat Med, 28, 2022, 1131–1132.  
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3.1. Patient Stratification and Precision Medicine  

Patient stratification refers to the process of categorizing individuals into subgroups based on shared 
characteristics, such as genetic variants, molecular biomarkers, or clinical features. This stratification 
forms the foundation of precision medicine, which seeks to tailor therapeutic interventions to the 
unique biological and clinical profiles of individual patients. By aligning treatments with patient-specific 
characteristics, precision medicine offers the potential for enhanced therapeutic efficacy, minimized ad-
verse effects, and more efficient drug development compared to traditional “one-size-fits-all” ap-
proaches. In oncology, AI and multi-omics integration have become particularly powerful in advancing 
patient stratification. AI-driven frameworks are capable of uncovering molecular subtypes of cancer as-
sociated with distinct prognoses and therapeutic responses. Such insights enable more accurate risk as-
sessment and the identification of patients most likely to benefit from specific interventions. Moreover, 
DL architectures, including convolutional neural networks (CNNs) and recurrent neural networks (RNNs), 
are increasingly employed for classification tasks in high-dimensional omics datasets. These models facil-
itate the discovery of subtle, non-linear patterns across diverse data types and thereby support the de-
velopment of highly personalized therapeutic strategies.43 

3.2. Multi-Omics Integration and Systems-Level Insights 

Multi-omics profiling is an emerging approach in which molecular phenomics data from multiple omics 
layers (including genomes, epigenomes, transcriptomes, proteomes, and metabolomes) are comprehen-
sively measured, analyzed, and integrated from the same set of samples on a genome-wide scale. By 
capturing and quantifying diverse biological signals across complementary molecular layers, multi-omics 
profiling enables the exploration of intricate interconnections between biological molecules and sup-
ports the identification of system-level biomarkers that cannot be discerned from single-omics analyses 
alone. AI methodologies play a pivotal role in the integration of these heterogeneous datasets, providing 
advanced methods to model complex biological interactions. Integration strategies range from concate-
nation and transformation-based approaches to more sophisticated frameworks such as GNNs and mul-
timodal DL.44 These methodologies uncover cross-layer relationships that inform systems biology, im-
prove mechanistic understanding, and advance precision medicine applications. 

4. Discussion 

Human health is shaped by a complex interplay of biological factors, social influences, healthcare access, 
education, economic conditions, and environmental surroundings. This intricate network of influences 
helps explain why the World Health Organization identifies the rising burden of non-communicable dis-
ease (NCD), or chronic conditions, as a critical public health concern especially in low- and middle-

 
43 A. YETGIN., op. cit; X. He, X. Liu, F. Zuo, H. Shi, J. Jing, Artificial intelligence-based multi-omics analysis fuels cancer 
precision medicine, in Semin Cancer Biol., 88, 2023, 187–200.  
44 Y. NAM, J. KIM, S.H. JUNG, J. WOERNER, E. H. SUH, D.G. LEE, et al., op. cit. 
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income countries.45 The majority of NCD deaths are due to cardiovascular diseases, accounting for 17.9 
million annually, followed by cancers (9.3 million), chronic respiratory diseases (4.1 million) and diabetes 
(2 million). A growing body of evidence indicate that advances in omics technologies and omics-driven AI 
have untangled specific molecular mechanisms predictive of, or underlying, these diseases.46 As an ex-
ample, in cardiovascular research, genomics approaches enabled the identification of both rare patho-
genic variants and common causative genetic variations. Additionally, transcriptomic profiling revealed 
novel molecular drivers and regulatory networks in nonfailing and failing human hearts and identified 
druggable targets and variability in patient therapeutic responses. Furthermore, advances in metabolic 
syndrome research were empowered by the integration of omics data with gut microbiome profiles, 
constant glucose monitoring, and dietary intake, analyzed by AI-based methodologies that for instance 
predict post-prandial glycemic responses. This integrative method provided a powerful framework for 
predicting diabetes risk.47 
Similar approaches have empowered our knowledge on chronic respiratory disease biology. Omics tech-
nologies and AI enable the integration of complex molecular, genetic and clinical data, leading to novel 
insights in disease mechanisms, biomarkers, and risk factors. Such strategies exemplify how advanced 
tools uncover shared pathways and predictive features across asthma, chronic obstructive pulmonary 
disease, and related conditions.48 Multi-omics approaches have also emerged as powerful tools for ac-
celerating cancer research, allowing to unravel the complex molecular interactions and dysregulations 
associated with specific tumor cohorts of patients. These strategies have already led to advances regard-
ing molecular subtyping, disease-gene association prediction and drug discovery.49 Despite the ad-
vancements in generating and integrating omics data with AI, several limitations remain. As already 
mentioned, these include the small sample sizes within individual datasets, difficulties in combining data 
from diverse cohorts due to technical biases, and the limited availability of information that may be cru-
cial for assuming robust conclusions. Additionally, it is worth mentioning that beyond genetic and physi-
ologic factors, disease occurrence is driven by a combination of global demographic and social tenden-
cies, such as population aging, environmental factors, economic transitions, as well as dietary and life-
style modifications.50 In this framework, omics data on NCD alone are insufficient to capture the diversi-

 
45 P. GELDSETZER, S. FLORES, G. WANG, B. FLORES, A.B. ROGERS, A. BUNKER, et al., A systematic review of healthcare pro-
vider-targeted mobile applications for non-communicable diseases in low- and middle-income countries, in NPJ Dig-
it Med, 5, 2022, 99.  
46 X. HE, X. LIU, F. ZUO, H. SHI, J. JING, op. cit.; R.S. WANG, B.A. MARON, J. LOSCALZO, Multiomics network medicine ap-
proaches to precision medicine and therapeutics in cardiovascular diseases, in Arterioscler Thromb Vasc Biol., 43, 
2023, 493–503.  
47 M. SUBRAMANIAN, A. WOJTUSCISZYN, L. FAVRE, S. BOUGHORBEL, J. SHAN, K. B. LETAIEF, et al., Precision medicine in the era 
of artificial intelligence: implications in chronic disease management, in J Transl Med, 18, 2020; 472.  
48 E. MAIORINO, S.H. BAEK, F. GUO, X. ZHOU, P.H. KOTHARI, E.K. SILVERMAN, et al., Discovering the genes mediating the in-
teractions between chronic respiratory diseases in the human interactome, in Nat Commun, 11, 2020, 811; Y. GUO, 
Q. LIU, Z. ZHENG, M. QING, T. YAO, B. WANG, et al., Genetic association of inflammatory marker GlycA with lung func-
tion and respiratory diseases, in Nat Commun, 15, 2024, 3751; S. AISHWARYA, P. C. SIDDALINGASWAMY, K. CHADAGA, Ex-
plainable artificial intelligence driven insights into smoking prediction using machine learning and clinical parame-
ters, in Sci Rep, 15, 2025, 24069.  
49 X. HE, X. LIU, F. ZUO, H. SHI, J. JING, op. cit. 
50 P. GELDSETZER, S. FLORES, G. WANG, B. FLORES, A.B. ROGERS, A. BUNKER, et al., op. cit.; R. FERRARA, R. NAPPO, F. ANSERMET, 
P. RICCI, F. MASSONI, G. CARBONE, et al., The impact of dsm-5on the diagnosis of autism spectrum disorder, in Psychi-
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ty across different populations and the gathering of additional data beyond omics, is an imperative need 
toward both precision and social medicine purposes.51 Hence, the inclusion of data from heterogeneous 
resources, including clinical records, socioeconomic indicators, geospatial exposures, and environmental 
monitoring systems may aid omics-driven AI models to unravel hidden causative relationships. Cumula-
tive measures of environmental exposure can be therefore combined with omics data to uncover how 
factors such as pollution, diet, accessibility to healthcare, among others, shape NCD trajectories. AI of-
fers a transformative framework for this integration with ML algorithms that are increasingly applied to 
harmonize multi-layered datasets. Furthermore, LLMs may be employed to facilitate the communication 
of these insights to diverse stakeholders, ranging from researchers with diverse backgrounds, clinicians, 
bioinformaticians, data scientists, epidemiologists, ethicists, and policymakers as well as patients.52 
These approaches may promote a more inclusive understanding of health within a broader social and 
ecological ecosystem that comprise multidisciplinary collaborations and targets. Likewise, important 
ethical and governance challenges arise regarding privacy protection and fair access to data. To this aim, 
AI models must ensure transparency and explainability.53 All these factors combined together will con-
tribute to design frameworks that advance both precision medicine and precision public health, helping 
to tackle the combined challenge of molecular complexity and health inequities, especially in NCD. 

5. Conclusions 

The integration of omics technologies and AI offers unique chances toward the advancement of both 
personalized and social medicine, particularly in addressing the complexity of NCD. Future progress will 
depend on the ability to integrate molecular data with social, environmental, and lifestyle determinants, 
while ensuring methodological robustness and reducing technical and cohort-related biases. 
At the same time, ethical determinants remain central. Transparency, fairness, and explainability of AI 
systems must be prioritized to ensure equitable benefits across populations.54 Importantly, patients 
should be regarded as active partners in this process: their autonomy, informed consent, and freedom 
of choice must guide the clinical implementation of AI-driven approaches. 
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In this perspective, the transformative potential of omics-informed AI lies both in predictive accuracy 
and therapeutic innovation, as well as in fostering a more participatory and socially-centered model of 
medicine. 
 


